Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Mikrochim Acta ; 191(5): 247, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587580

RESUMO

Alumina inorganic molecularly imprinted polymer (MIP) modified multi-walled carbon nanotubes (MWCNTs) on a glassy carbon electrode (MWCNTs-Al2O3-MIP/GCE) was firstly designed and fabricated by one-step electro deposition technique for the detection of uric acid (UA) in sweat. The UA templates were embedded within the inorganic MIP by co-deposition with Al2O3. Through the evaluation of morphology and structure by Field Emission Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM), it was verified that the specific recognition sites can be fabricated in the electrodeposited Al2O3 molecular imprinted layer. Due to the high selectivity of molecular imprinting holes, the MWCNTs-Al2O3-MIP/GCE electrode demonstrated an impressive imprinting factor of approximately 2.338 compared to the non-molecularly imprinted glassy carbon electrode (MWCNTs-Al2O3-NIP/GCE) toward uric acid detection. Moreover, it exhibited a remarkable limit of detection (LOD) of 50 nM for UA with wide detection range from 50 nM to 600 µM. The MWCNTs-Al2O3-MIP/GCE electrode also showed strong interference resistance against common substances found in sweat. These results highlight the excellent interference resistance and selectivity of MWCNTs-Al2O3-MIP/GCE sensor, positioning it as a novel sensing platform for non-invasive uric acid detection in human sweat.


Assuntos
Nanotubos de Carbono , Fosfatos , Suor , Humanos , Polímeros Molecularmente Impressos , Ácido Úrico , Óxido de Alumínio
2.
Artigo em Inglês | MEDLINE | ID: mdl-38641207

RESUMO

BACKGROUND & AIMS: Lacticaseibacillus rhamnosus GG (LGG) is the world's most consumed probiotic but its mechanism of action on intestinal permeability and differentiation along with its interactions with an essential source of signaling metabolites, dietary tryptophan, are unclear. METHODS: Untargeted metabolomic and transcriptomic analyses were performed in LGG mono-colonized germ-free (GF) mice fed tryptophan (trp)-free or -sufficient diets. LGG-derived metabolites were profiled in vitro under anaerobic and aerobic conditions. Multiomic correlations using a newly developed algorithm discovered novel metabolites tightly linked to tight junction (TJ) and cell differentiation genes whose abundances were regulated by LGG and dietary trp. Barrier-modulation by these metabolites were functionally tested in Caco2 cells, mouse enteroids, and dextran sulfate sodium (DSS) experimental colitis. The contribution of these metabolites to barrier protection is delineated at specific TJ proteins and enterocyte-promoting factors with gain and loss of function approaches. RESULTS: LGG, strictly with dietary trp, promotes the enterocyte program and expression of TJ genes, particularly Ocln. Functional evaluations of fecal and serum metabolites synergistically stimulated by LGG and trp revealed a novel Vitamin B3 metabolism pathway, with methylnicotinamide (MNA) unexpectedly being the most robust barrier-protective metabolite in vitro and in vivo. Reduced serum MNA is significantly associated with increased disease activity in IBD patients. Exogenous MNA enhances gut barrier in homeostasis and robustly promotes colonic healing in DSS colitis. MNA is sufficient to promote intestinal epithelial Ocln and RNF43, a master inhibitor of Wnt. Blocking trp or Vitamin B3 absorption abolishes barrier recovery in vivo. CONCLUSIONS: Our study uncovers a novel LGG-regulated dietary trp-dependent production of MNA that protects the gut barrier against colitis.

3.
Sci Rep ; 14(1): 8868, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632326

RESUMO

A retrospective cohort study was conducted to observe the correction effect of Toric intraocular lens (IOL) implantation in cataract eyes with specific types of irregular corneal astigmatism. Thirty-four eyes with either the "asymmetric bow-tie" pattern (Type I) or the "angled bow-tie" pattern (Type II) were included. Corneal topography was assessed using Pentacam HR, and changes in preoperative corneal astigmatism, visual acuity, manifest refraction, and objective visual quality were measured and compared. The average uncorrected distance visual acuity improved significantly from 0.86 ± 0.40 logMAR to 0.22 ± 0.15 logMAR (P < 0.001). Preoperative corneal astigmatism of 2.05 ± 0.90 D was corrected to a postoperative residual astigmatism of 0.78 ± 0.57 D (P < 0.001), with 32% of eyes within 0.50 D. The residual astigmatism prediction errors in Type I and Type II cases were (0.97 ± 0.68 D) and (0.66 ± 0.37 D), respectively (P = 0.100). The mean spherical equivalent prediction error in Type II cases (0.07 ± 0.36 D) was significantly smaller than that in Type I cases (- 0.29 ± 0.52 D) (P = 0.030). This study concludes that Toric IOL implantation effectively corrects specific types of irregular corneal astigmatism in cataract surgery. Eyes with the "angled bow-tie" pattern show higher accuracy in refractive predictions compared to eyes with the "asymmetric bow-tie" pattern.


Assuntos
Astigmatismo , Catarata , Doenças da Córnea , Lentes Intraoculares , Facoemulsificação , Humanos , Astigmatismo/cirurgia , Implante de Lente Intraocular , Estudos Retrospectivos , Refração Ocular , Doenças da Córnea/cirurgia
4.
Sci Total Environ ; : 172513, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657798

RESUMO

Balancing water demand for socio-economic development and ecosystem stability presents a challenge for regional sustainable management, especially in drylands. Previous studies have indicated that large-scale ecological restoration projects (ERPs) lead to a decline in terrestrial water storage (TWS) in the Mu Us Sandyland (MUS). However, the effects of other human activities (e.g., cropland reclamation, coal mining) on water resources remain unclear, raising concerns regarding water crisis and human-natural system sustainability. Through the utilization of coal mine location data, we found that the impact of coal mass loss on the Gravity Recovery and Climate Experiment (GRACE) products cannot be ignored in MUS, especially in the coal-rich northeastern part. Combining these data with auxiliary datasets, we observed a significant (p < 0.05) decrease in TWS (-0.85 cm yr-1) and groundwater storage (GWS, -0.95 cm yr-1) in the MUS, with human activities accounting for 79.23 % of TWS and 90.45 % of GWS reductions, primarily due to increased agricultural and industrial water consumption. Agricultural water consumption increased 2.23 times from 2001 to 2020, attributed to enhanced water use intensity (62.6 %) and cropland expansion (37.4 %). Industrial water consumption in Shenmu, a representative coal county, experienced a 4.16-fold rise between 2001 and 2020. Despite these challenges, local governments have alleviated water stress, ensured food security, and increased household income by comprehensive management strategies, such as enhancing water-saving technology and enforcing stringent policies. Previous studies have overestimated the amount of water resources consumed by ERPs. However, ERPs has played a critical role in stabilizing the regional ecological environment and ensuring the region as a vital food and energy supplier. Our findings can guide for socio-economic development and water management policies in similar regions.

5.
Ther Adv Neurol Disord ; 17: 17562864241239739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532801

RESUMO

Background: Magnetic resonance imaging of peripheral nerves in the wrist and palm is challenging due to the small size, tortuous course, complex surrounding tissues, and accompanying blood vessels. The occurrence of carpal palmar lesions leads to edema, swelling, and mass effect, which may further interfere with the display and identification of nerves. Objective: To evaluate whether contrast-enhanced magnetic resonance neurography (ceMRN) improves the visualization of the morphology and pathology of the median, ulnar nerves, and their small branches in the wrist and palm. Design: An observational study. Methods: In total 57 subjects, including 36 volunteers and 21 patients with carpal palmar lesions, were enrolled and underwent ceMRN and non-contrast MRN (ncMRN) examination at 3.0 Tesla. The degree of vascular suppression, nerve visualization, diagnostic confidence, and lesion conspicuity was qualitatively assessed by two radiologists. Kappa statistics were obtained for inter-reader agreement. The signal-to-noise ratio, contrast ratio (CR), and contrast-to-noise ratio (CNR) of the median nerve were measured. The subjective ratings and quantitative measurements were compared between ncMRN and ceMRN. Results: The inter-reader agreement was excellent (k > 0.8) for all qualitative assessments and visualization assessment of each nerve segment. Compared with ncMRN, ceMRN significantly improved vascular suppression in volunteers and patients (both p < 0.001). The ceMRN significantly enhanced nerve visualization of each segment (all p < 0.05) and diagnostic confidence in volunteers and patients (both p < 0.05). The ceMRN improved lesion conspicuity (p = 0.003) in patients. Quantitatively, ceMRN had significantly higher CRs of nerve versus subcutaneous fat, bone marrow, and vessels and CNR of nerve versus vessel than ncMRN (all p < 0.05). Conclusion: The ceMRN significantly improves the visualization of peripheral nerves and pathology in the wrist and palm by robustly suppressing the signals of fat, bone marrow, and especially vessels in volunteers and patients.


Study on the improvement of magnetic resonance imaging and lesion display of small nerves in the wrist and palm using contrast agents Why was the study done? Because the nerves and branches in the wrist and palm are numerous, small, tortuous, and surrounded by muscles, fat, bones, blood vessels and other tissues, it is difficult to show their complete shape with conventional magnetic resonance imaging. Hand lesions often lead to swelling, edema and masses, which interfere with the display of nerves. Therefore, it is difficult to directly diagnose the relationship between the lesions and nerves in clinical practice. What did the researchers do? The research team used contrast agent plus three-dimensional high-resolution magnetic resonance sequence to display the nerves of volunteers and patients with hand lesions, and used subjective and objective evaluation methods to compare the display effect of the sequence on the nerves before and after the use of contrast agent. What did the researchers find? The imaging method of contrast agent plus three-dimensional high-resolution magnetic resonance sequence can reduce the interference of fat, blood vessels, etc. on nerve display, improve the display effect of each nerve segment of the wrist and palm, increase readers' confidence in identifying nerves, and improve the detection of lesions. What do the findings mean? This study verified the feasibility and advantages of using contrast agents for magnetic resonance imaging of nerves in the wrist and palm. It provides a new method for clinical and imaging diagnosis of hand lesions, which can simultaneously display the morphological characteristics of nerves and lesions, reducing the difficulty of clinical diagnosis and improving the efficiency of imaging diagnosis.

6.
Anal Chim Acta ; 1299: 342421, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499417

RESUMO

BACKGROUND: Highly toxic organophosphorus nerve agents often exist in the form of gas in the environment and can damage human neuroregulatory system by inhibiting the activity of acetylcholinesterase (AChE). However, fluorescent probes based on small organic molecules bring a secondary burden to environment, and their sensitivity and specificity for sarin simulant diethyl chlorophosphate (DCP) detection are unsatisfactory. Nanozyme cascade systems with signal amplification can be used for highly sensitive identification of analytes, but are rarely used in ratiometric analysis of DCP. Combination of enzyme cascades and ratiometric fluorescence ensures the accuracy and sensitivity of the output signal. RESULTS: We prepared a self-assembled nanohybrid (Ag-AuNCs@UiO-66-NH2) by metal-organic framework material and gold nanoclusters. On the one hand, UiO-66-NH2 with enzyme-like activity was used to hydrolyze DCP into diethyl phosphate (DEP) and chloridion (Cl-). Cl- hindered aggregation-induced enhanced emission (AIEE) of AuNCs by binding with Ag+ and decreased the fluorescence of AuNCs. On the other hand, ligand metal charge transfer effect (LMCT) of UiO-66-NH2 was blocked by DCP to enhance the fluorescence of UiO-66-NH2. Combining ratiometric analysis and nanozyme cascade reaction, an ultra-sensitive fluorescence sensor for detecting DCP was constructed, and ensured the accuracy of experimental results. In addition, Ag-AuNCs@UiO-66-NH2 was embedded into the agarose hydrogel substrate, the resulting agarose hydrogel film allowed quantitative assessment of DCP vapor and high sensitivity was demonstrated (detection limit as low as 1.02 ppb). SIGNIFICANCE: A strategy combining enzyme cascade with ratiometric fluorescence was proposed, which improved the accuracy and sensitivity of the analysis results. The soft-solid platform based on agarose hydrogel film was constructed to realize the quantitative monitoring of sarin simulant gas. The LOD value obtained in this work is much lower than the immediately life-threatening or health threatening concentration of sarin.


Assuntos
Estruturas Metalorgânicas , Agentes Neurotóxicos , Ácidos Ftálicos , Humanos , Sarina , Acetilcolinesterase , Sefarose , Limite de Detecção
7.
Microbiol Spectr ; : e0018624, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511949

RESUMO

Inoculation with plant growth-promoting rhizobacteria (PGPR) strains has promoted plant growth and decreased nitrous oxide (N2O) emissions from agricultural soils simultaneously. However, limited PGPR strains can mitigate N2O emissions from agricultural soils, and the microbial ecological mechanisms underlying N2O mitigation after inoculation are poorly understood. In greenhouse pot experiments, the effects of inoculation with Stutzerimonas stutzeri NRCB010 and NRCB025 on tomato growth and N2O emissions were investigated in two vegetable agricultural soils with contrasting textures. Inoculation with NRCB010 and NRCB025 significantly promoted tomato growth in both soils. Moreover, inoculation with NRCB010 decreased the N2O emissions from the fine- and coarse-textured soils by 38.7% and 52.2%, respectively, and inoculation with NRCB025 decreased the N2O emissions from the coarse-textured soil by 76.6%. Inoculation with NRCB010 and NRCB025 decreased N2O emissions mainly by altering soil microbial community composition and the abundance of nitrogen-cycle functional genes. The N2O-mitigating effect might be partially explained by a decrease in the (amoA + amoB)/(nosZI + nosZII) and (nirS + nirK)/(nosZI + nosZII) ratios, respectively. Soil pH and organic matter were key variables that explain the variation in abundance of N-cycle functional genes and subsequent N2O emission. Moreover, the N2O-mitigating effect varied depending on soil textures and individual strain after inoculation. This study provides insights into developing biofertilizers with plant growth-promoting and N2O-mitigating effects. IMPORTANCE: Plant growth-promoting rhizobacteria (PGPR) have been applied to mitigate nitrous oxide (N2O) emissions from agricultural soils, but the microbial ecological mechanisms underlying N2O mitigation are poorly understood. That is why only limited PGPR strains can mitigate N2O emissions from agricultural soils. Therefore, it is of substantial significance to reveal soil ecological mechanisms of PGPR strains to achieve efficient and reliable N2O-mitigating effect after inoculation. Inoculation with Stutzerimonas stutzeri strains decreased N2O emissions from two soils with contrasting textures probably by altering soil microbial community composition and gene abundance involved in nitrification and denitrification. Our findings provide detailed insight into soil ecological mechanisms of PGPR strains to mitigate N2O emissions from vegetable agricultural soils.

8.
Gut Microbes ; 16(1): 2333483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532703

RESUMO

Although the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis. We observed a markedly reduced engraftment of CD_L3 microbiome compared to healthy control microbiota. FMT from CD_L3 patients did not lead to ileitis but resulted in colitis with features consistent with CD: a discontinued pattern of colitis, more proximal colonic localization, enlarged isolated lymphoid follicles and/or tertiary lymphoid organ neogenesis, and a transcriptomic pattern consistent with epithelial reprograming and promotion of the Paneth cell-like signature in the proximal colon and immune dysregulation characteristic of CD. The observed inflammatory response was associated with persistently increased abundance of Ruminococcus gnavus, Erysipelatoclostridium ramosum, Faecalimonas umbilicate, Blautia hominis, Clostridium butyricum, and C. paraputrificum and unexpected growth of toxigenic C. difficile, which was below the detection level in the community used for inoculation. Our study provides the first evidence that the transfer of a dysbiotic community from CD patients can lead to spontaneous inflammatory changes in the colon of xGF mice and identifies a signature microbial community capable of promoting colonization of pathogenic and conditionally pathogenic bacteria.


Assuntos
Clostridioides difficile , Colite , Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Camundongos , Animais , Doença de Crohn/microbiologia , Transplante de Microbiota Fecal , Disbiose/microbiologia
9.
Invest Ophthalmol Vis Sci ; 65(3): 35, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38546583

RESUMO

Purpose: To investigate the mechanisms underlying the differential roles of TGFß1 and TGFß3 in accelerating corneal epithelial wound healing (CEWH) in diabetic (DM) corneas, with normoglycemia (NL) corneas as the control. Methods: Two types of diabetic mice, human corneal organ cultures, mouse corneal epithelial progenitor cell lines, and bone marrow-derived macrophages (BMDMs) were employed to assess the effects of TGFß1 and TGFß3 on CEWH, utilizing quantitative PCR, western blotting, ELISA, and whole-mount confocal microscopy. Results: Epithelial debridement led to an increased expression of TGFß1 and TGFß3 in cultured human NL corneas, but only TGFß1 in DM corneas. TGFß1 and TGFß3 inhibition was significantly impeded, but exogenous TGFß1 and, more potently, TGFß3 promoted CEWH in cultured TKE2 cells and in NL and DM C57BL6 mouse corneas. Wounding induced similar levels of p-SMAD2/SMAD3 in NL and DM corneas but weaker ERK1/2, Akt, and EGFR phosphorylation in DM corneas compared to NL corneas. Whereas TGFß1 augmented SMAD2/SMAD3 phosphorylation, TGFß3 preferentially activated ERK, PI3K, and EGFR in healing DM corneas. Furthermore, TGFß1 and TGFß3 differentially regulated the expression of S100a9, PAI-1, uPA/tPA, and CCL3 in healing NL and DM corneas. Finally, TGFß1 induced the expression of M1 macrophage markers iNOS, CD86, and CTGF, whereas TGFß3 promoted the expression of M2 markers CD206 and NGF in BMDMs from db/db or db/+ mice. Conclusions: Hyperglycemia disrupts the balanced expression of TGFß3/TGFß1, resulting in delayed CEWH, including impaired sensory nerve regeneration in the cornea. Supplementing TGFß3 in DM wounds may hold therapeutic potential for accelerating delayed wound healing in diabetic patients.


Assuntos
Lesões da Córnea , Diabetes Mellitus Experimental , Hiperglicemia , Fator de Crescimento Transformador beta3 , Animais , Humanos , Camundongos , Córnea , Receptores ErbB , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta3/genética
10.
Langmuir ; 40(14): 7353-7363, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38536768

RESUMO

Nanomaterials of zinc oxide (ZnO) exhibit antibacterial activities under ambient illumination that result in cell membrane permeability and disorganization, representing an important opportunity for health-related applications. However, the development of antibiofouling surfaces incorporating ZnO nanomaterials has remained limited. In this work, we fabricate superhydrophobic surfaces based on ZnO nanopillars. Water droplets on these superhydrophobic surfaces exhibit small contact angle hysteresis (within 2-3°) and a minimal tilting angle of 1°. Further, falling droplets bounce off when impacting the superhydrophobic ZnO surfaces with a range of Weber numbers (8-46), demonstrating that the surface facilitates a robust Cassie-Baxter wetting state. In addition, the antibiofouling efficacy of the surfaces has been established against model pathogenic Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). No viable colonies of E. coli were recoverable on the superhydrophobic surfaces of ZnO nanopillars incubated with cultured bacterial solutions for 18 h. Further, our tests demonstrate a substantial reduction in the quantity of S. aureus that attached to the superhydrophobic ZnO nanopillars. Thus, the superhydrophobic ZnO surfaces offer a viable design of antibiofouling materials that do not require additional UV illumination or antimicrobial agents.


Assuntos
Óxido de Zinco , Molhabilidade , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Propriedades de Superfície , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química
11.
J Headache Pain ; 25(1): 29, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38454376

RESUMO

BACKGROUND: Energy metabolism disorders and neurogenic inflammation play important roles in the central sensitization to chronic migraine (CM). AMP-activated protein kinase (AMPK) is an intracellular energy sensor, and its activation regulates inflammation and reduces neuropathic pain. However, studies on the involvement of AMPK in the regulation of CM are currently lacking. Therefore, this study aimed to explore the mechanism underlying the involvement of AMPK in the central sensitization to CM. METHODS: Mice with recurrent nitroglycerin (NTG)-induced CM were used to detect the expression of AMPK protein in the trigeminal nucleus caudalis (TNC). Following intraperitoneal injection of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and inhibitor compound C, the mechanical pain threshold, activity level, and pain-like behaviors in the mice were measured. The expression of calcitonin gene-related peptide (CGRP) and cytokines, M1/M2 microglia, and NF-κB pathway activation were detected after the intervention. RESULTS: Repeated NTG injections resulted in a gradual decrease in AMPK protein expression, and the negative regulation of AMPK by increased ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression may counteract AMPK activation by increasing ADP/ATP. AICAR can reduce the hyperalgesia and pain-like behaviors of CM mice, improve the activity of mice, reduce the expression of CGRP, IL-1ß, IL-6, and TNF-α in the TNC region, and increase the expression of IL-4 and IL-10. Moreover, AMPK in TNC was mainly located in microglia. AICAR could reduce the expression of inducible NO synthase (iNOS) in M1 microglia and increase the expression of Arginase 1 (Arg1) in M2 microglia by inhibiting the activation of NF-κB pathway. CONCLUSIONS: AMPK was involved in the central sensitization of CM, and the activation of AMPK reduced neuroinflammation in NTG-induced CM mice. AMPK may provide new insights into interventions for energy metabolism disorders and neurogenic inflammation in migraine.


Assuntos
Transtornos de Enxaqueca , Nitroglicerina , Camundongos , Animais , Nitroglicerina/efeitos adversos , Microglia/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , NF-kappa B/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sensibilização do Sistema Nervoso Central/fisiologia , Inflamação Neurogênica/metabolismo , Dor/metabolismo , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo
12.
Adv Mater ; : e2311591, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426690

RESUMO

2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2 ) and silicon nitride (SiNx ). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx /Si and SiO2 /Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.

13.
Biomater Adv ; 159: 213824, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490019

RESUMO

The marketed paclitaxel (PTX) formulation Taxol relies on the application of Cremophor EL as a solubilizer. The major drawback of Taxol is its hypersensitivity reactions and a pretreatment of anti-allergic drugs is a necessity. Therefore, developing an efficient and safe delivery vehicle is a solution to increase PTX treatment outcomes with minimal adverse effects. In this work, we prepared the amphiphilic peptides (termed AmP) from soybean proteins using a facile two-step method. AmP could efficiently solubilize PTX by self-assembling into mixed micelles with D-α-tocopherol polyethylene glycol succinate (TPGS), a common pharmaceutical expedient (PTX@TPGS-AmP). The intravenously administrated PTX@TPGS-AmP exhibited a slow clearance (0.24 mL·(min·kg)-1) and an enhanced AUC (41.4 µg.h/mL), manifesting a 3.6-fold increase compared to Taxol. In a murine 4T1 tumor model, PTX@TPGS-AmP displayed a superior antitumor effect over Taxol. Importantly, safety assessment showed a high biocompatibility of AmP and an i.v. dose up to 2500 mg/kg led to no observable abnormalities in the mice. In summary, the AmP presents a new green and easily-prepared amphiphilic biomaterial, with promising potential as a pharmaceutical excipient for drug delivery.


Assuntos
Neoplasias , Paclitaxel , Camundongos , Animais , Paclitaxel/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Micelas , alfa-Tocoferol , Peptídeos
14.
Small ; : e2311927, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429244

RESUMO

Designing materials with low exciton binding energy is an efficient way of improving the hydrogen production performance of COFs(Covalent Organic Frameworks. Here, it is demonstrated that the strategy of decorating bromine atoms on Pyene-based COFs can achieve elevated photocatalytic H2 evolution rates (HER = 13.61 mmol g-1 h-1 ). Low-temperature fluorescence and time-resolved fluorescence spectroscopy (TRPL) indicate that the introduction of bromine atoms can significantly suppress charge recombination. DFT (Density Functional Theory) calculation clarified that the C atoms adjacent to Br are the active sites with a reduced energy barrier in the process of formatting H intermediate species (H*). The modification strategy of Br atoms in COF furnishes a new medium for exploiting exquisite photocatalysts.

15.
Heliyon ; 10(5): e26963, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449661

RESUMO

Mechanical processing and operations are widely involved in modern industry. Large amount of oil mist is tended to be produced and will diffuse in the processing workshop when metalworking fluids are applied on the high temperature workpiece. The ventilation modes and air distributions can influence the air pollutants dilution in machining workshops. Therefore, this paper presents both experimental investigation and simulation study on the oil mist particles diffusion under different ventilation modes. The results identified PM2.5 as the primary component among different oil mist particles generated during a typical machining process. The distribution of oil mist particles in a full-scale machining workshop laboratory was investigated under two ventilation modes: high-sidewall nozzle air supply and low-sidewall air supply. Results revealed obvious influences of both air supply modes on the distribution of oil mist particles. Under the high-sidewall-nozzle air supply mode, the airflow and the oil mist distribution in the workshop was relatively uniform; while the low-sidewall-vent air supply mode led to an uneven distribution of oil mist particles, and the maximum oil mist concentration appeared at the height of 3 m. Under both modes, the attempts to increase the airflow rate are not always successful. Compared with low-sidewall-vent air supply mode, the high-sidewall-nozzle air supply mode presents better performance in achieving lower overall particle concentration level. Overall, the results of this study give useful reference to improve the air quality of industrial plant by properly designing the ventilation mode of machining workshop.

16.
Plant Physiol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487893

RESUMO

Light and temperature are two major environmental factors that affect growth and development of plants during their life cycle. Plants have evolved complex mechanisms to adapt to varying external environments. Here, we show that JASMONATE ZIM-domain protein 3 (JAZ3), a jasmonic acid signaling component, acts as a factor to integrate light and temperature in regulating seedling morphogenesis. JAZ3 overexpression transgenic lines display short hypocotyls under red, far-red, and blue light and warm temperature (28 °C) conditions compared to the wild type in Arabidopsis (Arabidopsis thaliana). We show that JAZ3 interacts with the transcription factor PHYTOCHROME-INTERACTING FACTOR4 (PIF4). Interestingly, JAZ3 spontaneously undergoes liquid-liquid phase separation (LLPS) in vitro and in vivo and promotes LLPS formation of PIF4. Moreover, transcriptomic analyses indicate that JAZ3 regulates the expression of genes involved in many biological processes, such as response to auxin, auxin-activated signaling pathway, regulation of growth, and response to red light. Finally, JAZ3 inhibits the transcriptional activation activity and binding ability of PIF4. Collectively, our study reveals a function and molecular mechanism of JAZ3 in regulating plant growth in response to environmental light and temperature.

17.
Nanomaterials (Basel) ; 14(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38470803

RESUMO

Developing novel supercapacitor electrodes with high energy density and good cycle stability has aroused great interest. Herein, the vertically aligned CoNiO2/Co3O4 nanosheet arrays anchored on boron doped diamond (BDD) films are designed and fabricated by a simple one-step electrodeposition method. The CoNiO2/Co3O4/BDD electrode possesses a large specific capacitance (214 mF cm-2) and a long-term capacitance retention (85.9% after 10,000 cycles), which is attributed to the unique two-dimensional nanosheet architecture, high conductivity of CoNiO2/Co3O4 and the wide potential window of diamond. Nanosheet materials with an ultrathin thickness can decrease the diffusion length of ions, increase the contact area with electrolyte, as well as improve active material utilization, which leads to an enhanced electrochemical performance. Additionally, CoNiO2/Co3O4/BDD is fabricated as the positive electrode with activated carbon as the negative electrode, this assembled asymmetric supercapacitor exhibits an energy density of 7.5 W h kg-1 at a power density of 330.5 W kg-1 and capacity retention rate of 97.4% after 10,000 cycles in 6 M KOH. This work would provide insights into the design of advanced electrode materials for high-performance supercapacitors.

18.
Sci Data ; 11(1): 248, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413602

RESUMO

This report presents the Harespod dataset, an open dataset for high altitude hypoxia research, which includes respiration and SpO2 data. The dataset was collected from 15 college students aged 23-31 in a hypobaric oxygen chamber, during simulated altitude changes and induced hypoxia. Real-time physiological data, such as oxygen saturation waveforms, oxygen saturation, respiratory waveforms, heart rate, and pulse rate, were obtained at 100 Hz. Approximately 12 hours of valid data were collected from all participants. Researchers can easily identify the altitude corresponding to physiological signals based on their inherent patterns. Time markers were also recorded during altitude changes to facilitate realistic annotation of physiological signals and analysis of time-difference-of-arrival between various physiological signals for the same altitude change event. In high altitude scenarios, this dataset can be used to enhance the detection of human hypoxia states, predict respiratory waveforms, and develop related hardware devices. It will serve as a valuable and standardized resource for researchers in the field of high altitude hypoxia research, enabling comprehensive analysis and comparison.


Assuntos
Doença da Altitude , Saturação de Oxigênio , Humanos , Altitude , Hipóxia , Respiração , Adulto Jovem , Adulto
19.
J Am Chem Soc ; 146(6): 3836-3843, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306697

RESUMO

Modulating the electronic structure of metal nanoparticles via metal-support interaction has attracted intense interest in the field of catalytic science. However, the roles of supporting substrates in regulating the catalytic properties of electrochemiluminescence (ECL) remain elusive. Here, we find that the use of graphdiyne (GDY) as the substrate for electroless deposition of Pd nanoparticles (Pd/GDY) produces the most pronounced anodic signal enhancement in luminol-dissolved oxygen (O2) ECL system as co-reactant accelerator over other carbon-based Pd composite nanomaterials. Pd/GDY exhibits electrocatalytic activity for the reduction of O2 through a four-electron pathway at approximately -0.059 V (vs Ag/AgCl) in neutral solution forming reactive oxygen species (ROS) as intermediates. The study shows that the interaction of Pd and GDY increases the amount and stability of ROS on the Pd/GDY electrode surface and promotes the reaction of ROS and luminol anion radical to generate excited luminol, which significantly boosts the luminol anodic ECL emission. Based on quenching of luminol ECL through the consumption of ROS by antioxidants, we develop a platform for the detection of intracellular antioxidants. This study provides an avenue for the development of efficient luminol ECL systems in neutral media and expands the biological application of ECL systems.

20.
Brain Sci ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38391721

RESUMO

Shift work may adversely affect individuals' health, thus, the current study aimed to investigate the association between shift work and health outcomes in the general population. A total of 41,061 participants were included in this online cross-sectional survey, among which 9612 (23.4%) individuals engaged in shift work and 31,449 (76.6%) individuals engaged in non-shift work. Multiple logistic regression analyses were conducted to explore the association between shift work and health outcomes (psychiatric disorders, mental health symptoms, and physical disorders). In addition, associations between the duration (≤1 year, 1-3 years, 3-5 years, 5-10 years, ≥10 years) and frequency of shift work (<1 or ≥1 night/week) and health outcomes were also explored. The results showed that compared to non-shift workers, shift workers had a higher likelihood of any psychiatric disorders (odds ratios [OR] = 1.80, 95% CI = 1.56-2.09, p < 0.001), mental health symptoms (OR = 1.76, 95% CI = 1.68-1.85, p < 0.001), and physical disorders (OR = 1.48, 95% CI = 1.39-1.57, p < 0.001). In addition, inverted U-shaped associations were observed between the duration of shift work and health outcomes. These results indicated that shift work was closely related to potential links with poor health outcomes. The findings highlighted the importance of paying attention to the health conditions of shift workers and the necessity of implementing comprehensive protective measures for shift workers to reduce the impact of shift work.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...